skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "MDPI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MDPI (Ed.)
    This paper presents a comprehensive investigation to evaluate the impacts of air cavities between existing walls and insulated panels on the overall R-values of the retrofitted building envelope systems, addressing a key challenge in exterior envelope retrofitting. The effects of several factors are considered including the air cavity thickness (ranging from 0.1 cm to 5 cm), airflow velocity (varying between 0.1 m/s and 1 m/s), and surface emissivity (set between 0.1 and 0.9), in addition to the thickness of the insulated panels (ranging from 1 cm to 7 cm). It is found that any increase in the air cavity thickness increases the overall R-values of the building envelope assemblies when air is trapped within the sealed cavity. However, when air convection is prevalent, the overall R-value of the retrofitted walls decreases with any increase in air velocity and air cavity thickness. For sealed air cavities, the analysis results show a 9% improvement in R-value of the retrofitted walls. However, the R-value of retrofitted walls with unsealed air cavities can degrade by 76% and 81% for natural and forced air flows, respectively. Emissivity adjustment is found to be the most effective in improving the thermal performance of building envelopes with sealed air cavities, increasing the R-value of retrofitted walls by 13.6% when reduced from 0.9 to 0.1. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. MDPI (Ed.)
    In the recent K-12 educational literature, arts-based data visualization has been positioned as a compelling means of rendering data science and statistical learning accessible, motivating, and empowering for youth, as data users and producers. However, the only research to attend carefully to youth’s data-based, artistic storytelling practices has been limited in scope to specific storytelling mechanisms, like youth’s metaphor usage. Engaging in design-based research, we sought to understand the art and design decisions that youth make and the data-based arguments and stories that youth tell through their arts-based data visualizations. We drew upon embodied theory to acknowledge the holistic, synergistic, and situated nature of student learning and making. Corresponding with emerging accounts of youth arts-based data visualization practices, we saw regular evidence of art, storytelling, and personal subjectivities intertwining. Contributing to this literature, we found that these intersections surfaced in a number of domains, including youth’s pictorial symbolism, visual encoding strategies, and data decisions like manifold pictorial symbols arranged to support complex, multilayered, ambiguous narratives; qualitative data melding community and personal lived experience; and singular statements making persuasive appeals. This integration of art, story, agency, and embodiment often manifested in ways that seemed to jostle against traditional notions of and norms surrounding data science. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. MDPI (Ed.)
    This paper provides an analysis of challenges and available solutions for exterior insulated panels suitable for deep energy retrofits of existing building envelopes. The analysis covers a review of available technologies that provide flexible retrofit insulated panels suitable for multiple climates and building typologies. Moreover, the paper proposes a new design for insulated retrofit panels that account for the majority of identified technical risks including cost, architectural diversity, climate variations, structural concerns, moisture resilience, air sealing, and water sealing. Additionally, the proposed design can be easily installed with minimal disruption to the occupants. A series of parametric and optimization analyses is carried out to identify the optimal design specifications for insulated panels suitable for deep retrofits of existing US housing stocks. The analysis results show that the optimal design criteria for the insulated panels can reduce heating and cooling energy consumption by up to 80% and HVAC capacities by 70%. Moreover, the results indicate that these insulated panels are highly cost effective for retrofitting US housing units located in cold climates. 
    more » « less
  4. MDPI (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart 
    more » « less
  5. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest- Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center 
    more » « less
  6. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident g-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center. 
    more » « less